504 research outputs found

    The Evolution of Active Galactic Nuclei in Warm Dark Matter Cosmology

    Full text link
    Recent measurements of the abundance of AGN with low-luminosities (L_X< 10^44 erg/s in the 2-10 keV energy band) at high redshifts z>4 provide a serious challenge for Cold Dark Matter (CDM) models based on interaction-driven fueling of AGN. Using a semi-analytic model of galaxy formation we investigate how such observations fit in a Warm Dark Matter (WDM) scenario of galaxy formation, and compare the results with those obtained in the standard CDM scenario with different efficiencies for the stellar feedback. Taking on our previous exploration of galaxy formation in WDM cosmology, we assume as a reference case a spectrum which is suppressed - compared to the standard CDM case - below a cut-off scale ~ 0.2$ Mpc corresponding (for thermal relic WDM particles) to a mass m_X=0.75 keV. We run our fiducial semi-analytic model with such a WDM spectrum to derive AGN luminosity functions from z~6 to the present over a wide range of luminosities (10^43< L_X/erg/s < 10^46 in the 2-10 keV X-ray band), to compare with recent observations and with the results in the CDM case. When compared with the standard CDM case, the luminosity distributions we obtain assuming a WDM spectrum are characterized by a similar behaviour at low redshift, and by a flatter slope at faint magnitudes for z>3, which provide an excellent fit to present observations. We discuss how such a result compares with CDM models with maximized feedback efficiency, and how future deep AGN surveys will allow for a better discrimination between feedback and cosmological effects on the evolution of AGN in interaction-driven models for AGN fueling.Comment: Accepted for publication in The Astrophysical Journal; typos and references correcte

    Triggering Active Galactic Nuclei in Hierarchical Galaxy Formation: Disk instability vs. Interactions

    Full text link
    Using a semi analytic model for galaxy formation we investigate the effects of Black Hole accretion triggered by disk instabilities (DI) in isolated galaxies on the evolution of AGN. Specifically, we took on, developed and expanded the Hopkins & Quataert (2011) model for the mass inflow following disk perturbations, and compare the corresponding evolution of the AGN population with that arising in a scenario where galaxy interactions trigger AGN (IT mode). We extended and developed the DI model by including different disk surface density profiles, to study the maximal contribution of DI to the evolution of the AGN population. We obtained the following results: i) for luminosities corresponding to M145026M_{1450}\gtrsim -26 the DI mode can provide the BH accretion needed to match the observed AGN luminosity functions up to z4.5z \approx 4.5; in such a luminosity range and redshift, it can compete with the IT scenario as the main driver of cosmological evolution of AGN; ii) The DI scenario cannot provide the observed abundance of high-luminosity QSO with M145026M_{1450}\lesssim -26 AGN, as well as the abundance of high-redhshift z4.5z \approx 4.5 QSOs with M145024M_{1450}\lesssim -24, while the IT scenario provides an acceptable match up to z6z \approx 6, as found in our earliest works; iii) The dispersion of the distributions of Eddington ratio for low- and intermediate-luminosity AGN (bolometric LAGNL_{AGN} = 104310^{43} - 104510^{45} erg/s) is predicted to be much smaller in the DI scenario compared to the IT mode; iv) The above conclusions are robust with respect to the explored variants of the Hopkins & Quataert (2011) model. We discuss the physical origin of our findings, and how it is possible to pin down the dominant fueling mechanism in the low-intermediate luminosity range M145026M_{1450}\gtrsim -26 where both the DI and the IT modes are viable candidates as drivers for the AGN evolution.Comment: Accepted for publication in Astronomy & Astrophysics, 24 pages, 8 figures; updated reference

    Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy formation models

    Get PDF
    We derive the contribution to the extragalactic gamma-ray background (EGB) from AGN winds and star-forming galaxies by including a physical model for the gamma-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast wave as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Fermi-LAT in the range between 100 MeV and 820 GeV. We find that AGN winds can provide ~35±\pm15% of the observed EGB in the energy interval E_{\gamma}=0.1-1 GeV, for ~73±\pm15% at E_{\gamma}=1-10 GeV, and for ~60±\pm20% at E_{\gamma}>10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative gamma-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p=2.2-2.3, and taking into account internal absorption of gamma-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.Comment: 12 pages, 8 figures, accepted for publication in A&

    Who talks about collaborative spaces, how, and why

    Get PDF
    Communities in urban contexts and firms in corporate offices have recently started to implement collaborative spaces. Several authors from different disciplines are currently advancing knowledge in this realm. Systematizing this diverse knowledge base helps to advance our understanding of this novel phenomenon. To this end, the present work reviews 29 papers focusing on collaborative spaces. We analyse these papers in terms of contents, research methods, fields of study, authors’ background, and impact on the academic community. Grounding on this analysis, we outline new relevant research questions and opportunities for future investigations

    Open Business Models and Venture Capital Finance

    Get PDF
    We investigate the differences in venture capital (VC) governance of investee firms with Open Business Models, specifically Open Source Software (OSS), versus closed business models. Due to OSS’s pronounced complexity and uncertainty, we conjecture that VC-backed OSS firms are more frequently staged and syndicated. We present robust empirical evidence from the United States that OSS ventures have more financing rounds and are more likely to be syndicated, and mixed evidence that OSS ventures have a larger number of syndicated investors

    Physical properties of AGN host galaxies as a probe of SMBH feeding mechanisms

    Get PDF
    Using an advanced semi analytic model (SAM) for galaxy formation, we have investigated the statistical effects of assuming two different mechanisms for triggering AGN activity on the properties of AGN host galaxies. We have considered a first accretion mode where AGN activity is triggered by disk instabilities (DI) in isolated galaxies, and a second feeding mode where such an activity is triggered by galaxy mergers and fly-by events (interactions, IT). We obtained the following results:i) for hosts with M1011MM_* \lesssim 10^{11} M_{\bigodot}, both DI and IT modes are able to account for the observed AGN hosts stellar mass function; for more massive hosts, the DI scenario predicts a lower space density than the IT model, lying below the observational estimates for z>0.8.ii) The analysis of the color-magnitude diagram (CMD) of AGN hosts for redshift z < 1.5 can provide a good observational test to effectively discriminate between the DI and IT mode, since DIs are expected to yield AGN host galaxy colors skewed towards bluer colors, while in the IT scenario the majority of hosts are expected to reside in the red sequence.iii) While both IT and DI scenarios can account for AGN triggered in main sequence or starburst galaxies, DIs fail in triggering AGN activity in passive galaxies.iv) The two modes are characterized by a different duration of the AGN phase, with DIs lasting even on time scales \sim Gyr, much longer with respect to the IT scenario.v) The scatter of the SFRLbolSFR-L_{bol} relation could represent another crucial diagnostics to discriminate between the two triggering modes, since the DI scenario predicts an appreciably lower scatter of the relation than the IT scenario. vi) Disk instabilities are not able to account for the observed fraction of AGN in groups for z < 1 and clusters for z < 0.7, while the IT scenario provides a good match to observational data.Comment: Paper accepted for publication in section 4. Extragalactic astronomy of Astronomy and Astrophysic

    AGN counts at 15um. XMM observations of the ELAIS-S1-5 sample

    Full text link
    Context: The counts of galaxies and AGN in the mid infra-red (MIR) bands are important instruments for studying their cosmological evolution. However, the classic spectral line ratios techniques can become misleading when trying to properly separate AGN from starbursts or even from apparently normal galaxies. Aims: We use X-ray band observations to discriminate AGN activity in previously classified MIR-selected starburst galaxies and to derive updated AGN1 and (Compton thin) AGN2 counts at 15 um. Methods: XMM observations of the ELAIS-S1 15um sample down to flux limits ~2x10^-15 erg cm^-2 s^-1 (2-10 keV band) were used. We classified as AGN all those MIR sources with a unabsorbed 2-10 keV X-ray luminosity higher that ~10^42 erg/s. Results: We find that at least about 13(+/-6) per cent of the previously classified starburst galaxies harbor an AGN. According to these figures, we provide an updated estimate of the counts of AGN1 and (Compton thin) AGN2 at 15 um. It turns out that at least 24% of the extragalactic sources brighter than 0.6 my at 15 um are AGN (~13% contribution to the extragalactic background produced at fluxes brighter than 0.6 mJy).Comment: Accepted for publication on A&

    Galaxy Formation in Sterile Neutrino Dark Matter Models

    Get PDF
    We investigate galaxy formation in models with dark matter (DM) constituted by sterile neutrinos. Given their large parameter space, defined by the combinations of sterile neutrino mass mνm_{\nu} and mixing parameter sin2(2θ)\sin^2(2\theta) with active neutrinos, we focus on models with mν=7m_{\nu}=7 keV, consistent with the tentative 3.5 keV line detected in several X-ray spectra of clusters and galaxies. We consider i) two resonant production models with sin2(2θ)=51011\sin^2(2\theta)=5\,10^{-11} and sin2(2θ)=21010\sin^2(2\theta)=2\,10^{-10}, to cover the range of mixing parameter consistent with the 3.5 keV line; ii) two scalar-decay models, representative of the two possible cases characterizing such a scenario: a freeze-in and a freeze-out case. We also consider thermal Warm Dark Matter with particle mass mX=3m_X=3 keV. Using a semi-analytic model, we compare the predictions for the different DM scenarios with a wide set of observables. We find that comparing the predicted evolution of the stellar mass function, the abundance of satellites of Milky Way-like galaxies, and the global star formation history of galaxies with observations does not allow to disentangle the effects of the baryonic physics from those related to the different DM models. On the other hand, the distribution of the stellar-to-halo mass ratios, the abundance of faint galaxies in the UV luminosity function at z6z\gtrsim 6, and the specific star formation and age distribution of local, low-mass galaxies constitute potential probes for the considered DM scenarios. We discuss how next observations with upcoming facilities will enable to rule out or to strongly support DM models based on sterile neutrinos.Comment: 21 pages, accepted for publication in The Astrophysical Journa
    corecore